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Lower greenschist facies dark gray argillite of the Middle
Proterozoic Libby Formation in northwestern Montana
contains a low abundance and low diversity acritarch mi-
crobiota. Four morphological types of acritarchs have been
detected: 1) Small (8 to 32 um in diameter) spherical
types (leiomorphs) are represented by four categories
based on size, wall configuration, and spatial arrange-
ment of cells; 2) large (up to 150 um maximum diameter)
ovoidal, thick-walled, dense types with granular surfaces;
3) fusiform types; and 4) an odd, torus-shaped type. Most
of the acritarchs average between 10 and 40 um in di-
ameter.

These microfossils are significant for several reasons:
1) They occur in low-grade metamorphic sedimentary
rocks. Normally, it is expected that such metamorphism
will destroy organic-walled microfossils. 2) The Libby mi-
crofossils augment our understanding of Middle Protero-
zoic microbial assemblages in western North America
where only a few other localities of this age are known.
3) Taphonomic considerations aside, the low abundance
and diversity of this microbiota may be a function of
either its age and/or environment in which the organisms
lived. 4) The Libby microbiota appears to be slightly more
diverse than sphaeromorph acritarch assemblages from
unmetamorphosed lower Belt Supergroup strata in the
eastern Belt basin. This suggests one of two things: a)
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The Libby acritarchs inhabited a more open marine en-
vironment than those from older strata in the east, or b)
a paleobiologically significant amount of time separates
the two biotas from the lower and upper Belt, such that
by Libby time, sphaeromorph acritarchs had diversified
somewhat. 5) The acritarchs resemble other Middle Pro-
terozoic spheroidal acritarch assemblages. However, no
biostratigraphically diagnostic taxa that might help clar-
ify controversial upper Belt ages have been discovered in
these samples. This might be a function of taphonomy,
metamorphism, and age of the strata as well as the fact
that morphologically distinctive, relatively short-lived
species are not common among Middle Proterozoic acri-
tarch taxa.

We emphasize that, although it is desirable to search
for remains of Proterozoic life in unmetamorphosed rocks,
less attractive lithologies should not be ignored. Weakly
metamorphosed strata can provide additional sources of
paleontological information.

INTRODUCTION

Acritarchs are organic-walled microfossils of uncertain
taxonomic affinity that are normally studied from acid-
resistant materials recovered by palynological techniques
applied to fine-grained clastic rocks. Although acritarchs
have been known for many years, it wasn’t until the late
1940’s and early 1950’s that their potential for biostrati-
graphic analyses was fully recognized in Paleozoic rocks
(e.g., Naumova, 1949). The use of acritarchs to help resolve
Proterozoic stratigraphic problems was developed in the
USSR, apparently first by Naumova (1951) on the acri-
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tarchs from Late Proterozoic rocks in the Urals and
soon followed by the works of Timofeev (e.g., 1955, 1959,
1969) from Late Proterozoic sequences in Siberia and the
Baltic region. Rather intensive study of Eurasian Protero-
zoic acritarchs by micropaleontologists has produced a large
body of data that allows for rather precise correlations of
Late Proterozoic strata (Timofeev, 1959, 1969; Roblot, 1963;
Volkova, 1968; Hsing [Xing] and Liu, 1973; Vidal, 1976b).
The application of acritarchs for resolving Proterozoic
chronostratigraphic problems has now been applied else-
where (for example, Peat et al., 1978; Cloud and Germs,
1971; Lenk et al., 1982; Amard, 1986; Damassa and Knoll,
1986).

Unmetamorphosed, fine-grained sedimentary rocks are
the rocks of choice for most acritarch research. Metased-
iments are usually avoided because of the thermal alter-
ation and destruction of organic-walled microfossils during
metamorphism (Vidal, 1981). Several examples of acri-
tarchs, however, have been recovered from low-grade
metamorphosed clastic rocks (for example, Vialov and Ti-
mofeev, 1959; Vidal, 1976a; Konzalova, 1981; Amard, 1983;
Pflug and Reitz, 1988). Acritarchs and filamentous micro-
fossils have also been recovered from chert nodules in shales
metamorphosed to lower greenschist facies (Knoll and Ohta,
1988). High-grade metamorphism destroys the structural
integrity of microfossils; upon maceration, minute kerogen
or graphite particles are all that remain. In addition, re-
search by Wang and Luo (1982) suggests that a fortuitous
organization of kerogen particles can occur during some
maceration processes, resulting in the formation of pseu-
domicrofossils. Apparently this is the origin of the alleged
microfossil Manneria Lopuchin (Lopuchin, 1975).

The low-grade metamorphic argillite of the Middle Pro-
terozoic Libby Formation (upper Belt Supergroup) con-
tains a reasonably well-preserved acritarch microbiota that
has been detected in both macerates and in thin section.
These acritarchs are low in diversity and abundance; how-
ever, they and discoveries like these in other metamorphic
terranes are highly significant because they have the po-
tential to help resolve important chronostratigraphic prob-
lems that are common for many metamorphosed Protero-
zoic sedimentary sequences. The age of the upper Belt
Supergroup is uncertain, controversial, and a case in point.
Based on radiometric, paleomagnetic, and lithostrati-
graphic analyses, ages of 900 Ma and >1200 Ma have been
interpreted for upper Belt rocks (see discussion below).
The discovery of acritarchs in the Libby Formation pro-
vides an opportunity to employ paleontological methods
toward resolution of this controversy. Although metamor-
phosed, the Libby acritarchs are sufficiently well-pre-
served to warrant an attempt to evaluate their biostrati-
graphic usefulness.

Before one can expect the Libby acritarchs to be the
remedy for solving upper Belt age problems, some caveats
are appropriate here. The metamorphism of the Libby,
although low, might have destroyed or altered potentially
useful taxa. Diagnostic, relatively short-lived acritarch taxa
are rare for Middle Proterozoic strata except for those of
late Middle Proterozoic (approximately 1050 to 900 Ma)

age. Most Middle Proterozoic acritarchs are simple spher-
oids and thus taxonomy is difficult. Middle Proterozoic
acritarchs have not been studied in as great a detail as
those from the Late Proterozoic, and, hence, precise bio-
stratigraphically determined ages cannot be made with a
great deal of confidence.

In addition to potential use for helping in chronostrati-
graphic problems, the Libby acritarchs provide additional
micropaleontological information for the Middle Protero-
zoic, an interval of pre-Phanerozoic time which is biogeo-
logically important because of the early radiation of eu-
karyotes (Vidal, 1984).

GEOLOGIC SETTING

The Belt Supergroup is a thick succession of predomi-
nantly fine-grained, weakly metamorphosed sedimentary
rocks deposited over a large area in northwestern Montana,
northern Idaho, northeastern Washington, and southern
British Columbia and Alberta (Fig. 2). The supergroup
overlies crystalline basement in the southeast, and it is
unconformably overlain by the Late Proterozoic Win-
dermere Supergroup in the northwest and by Paleozoic
strata in other parts of the region. Belt sedimentation was
primarily turbiditic during the early history of the basin
(Cressman, 1985), and was dominated by shallow-water
deposits throughout the remainder of its history (Harrison,
1972; Winston, 1986). Depositional environments in these
rocks are controversial, with both marine (Price, 1964;
Harrison, 1972; McMechan, 1981) and non-marine (Win-
ston et al., 1984; Winston, 1986) interpretations proposed.

The Libby Formation is the uppermost Belt unit in the
western part of the basin in the United States (Figs. 1, 2).
The lower Libby consists of greenish-gray and dark gray
argillite and siltite that were deposited in shallow water
environments associated with stromatolites, ooids, shrink-
age cracks, and symmetrical ripples that can be interpreted
as either a tidal flat or periodically exposed lacustrine
setting (Kidder, 1988a, b). No evaporites have been de-
tected in the Libby, although salt casts are preserved near
Missoula (Fig. 1) in the McNamara Formation, a unit that
correlates to the lower Libby Formation (Kidder, 1988b).
The upper Libby is characterized by hummocky cross-
stratified, coarse-grained siltite and fine-grained arkosic
and subarkosic wackes and arenites that do not display
the shallow-water features present in the lower Libby
(Kidder 1988a, b). The upper part of the Libby Formation
was probably deposited below fair-weather wave base, but
without diagnostic fossils or geochemical data, confident
placement of the upper Libby into a marine lacustrine
setting is difficult.

Lower greenschist metamorphism is inferred for the Lib-
by Formation near Libby, Montana based on proximity to
equivalent exposures east of Clark Fork, Idaho, approxi-
mately 40 km southwest of the acritarch-bearing rocks of
this study. Samples of the Libby Formation at Clark Fork
were interpreted as lower greenschist facies based on the
presence of 2M muscovite (Maxwell and Hower, 1967).
Chlorite (x-ray analysis of argillite) has been reported from
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FIGURE 1—Location map showing geographic extent of Belt Super-
group and localities mentioned in text.

the same locality (Eslinger and Sellars, 1981). We interpret
the metamorphic grade at Libby to be similar to that at
Clark Fork based on the slaty nature of some beds and
the general field and petrographic similarities of the Libby
Formation at Libby and Clark Fork.

Older units in the Belt are also interpreted to have been
metamorphosed. At Clark Fork, metamorphic grade in-
creased down section from the Libby to biotite grade in
the basal Prichard Formation (Maxwell and Hower, 1967;
Eslinger and Sellars, 1981). Oxygen isotopic analyses of
coexisting quartz and illite phases in the Middle Belt Car-
bonate and Ravalli Group in Glacier National Park (ap-
proximately 150 km east of Libby) led Eslinger and Savin
(1973) to conclude that burial metamorphism elevated
temperatures in these older Belt rocks to 225°-310° C.

Age

Definitive age data for the Belt Supergroup are limited.
A maximum age of approximately 1700 Ma for these rocks
is derived from a 1700 Ma Rb-Sr whole rock isochron age
for metamorphosed crystalline basement rocks (Giletti,
1966) and a metamorphic U-Pb age of 1668 + 32 Ma from
zircons from migmatitic paragneiss beneath the Belt (Arm-
strong et al., 1987). Minimum ages are older than 770 Ma
for rocks just beneath the Windermere Supergroup from
the MacKenzie Mountains Supergroup in the Northwest
Territories of Canada. These minimum ages are based on
Rb-Sr dates on several types of mineral fractions separated
from diabase by magnetic and density methods (Arm-
strong et al., 1982). Older minimum ages (827-918 Ma)
have been obtained by K-Ar analyses on whole-rock sam-
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FIGURE 2—Stratigraphy of the type locality of the Libby Formation
along the Kootenai River ahout 8 miles west of the town of Libby,
Montana, and correlation to acritarch-bearing formations in the lower
Belt Supergroup (solid line). Shown are the position of the Libby For-
mation within the belt (dashed lines), informal members within the Libby
Formation after Kidder (1988a, b), and zones in which acritarchs have
been recovered.

ples and plagioclase separates from the basaltic greenstone
assemblage in the Windermere Supergroup that uncon-
formably overlies the Belt Supergroup and equivalent Deer
Trail Group in northeastern Washington (Miller et al.,
1973; Miller and Whipple, 1989).

Ages for rocks within the supergroup include the lower
Belt Prichard Formation age of 1433 + 13 Ma determined
by U-Pb analysis of zircon from the Crossport C sill in
Idaho (Zartman et al.,, 1982). Ages for stratigraphically
younger Belt rocks are less reliable. Rb-Sr whole rock iso-
chron analyses of argillite (Obradovich and Peterman, 1968,
1973; Obradovich et al., 1984) yield ages of approximately
1300 Ma (Ravalli Group), 1100 Ma (Missoula Group), and
900 Ma (Garnet Range Formation and Pilcher Quartzite).
K-Ar analyses of glauconite (Obradovich and Peterman,
1968) yield ages of about 1100 Ma for rocks from the Ra-
valli Group through McNamara (=lower Libby) Forma-
tion. The most direct radiometric age estimate for the
Libby Formation comes from a stratigraphic correlation
(Harrison, 1972) to an argillite in the Garnet Range For-
mation (upper Libby) in the Alberton region approxi-
mately 50 km west of Missoula in which Rb-Sr whole rock
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analyses have yielded a 900 Ma-old age (Obradovich et al.,
1984).

Paleomagnetic studies suggest that the entire Belt Su-
pergroup may be older than 1200 Ma. Elston and Bressler
(1980) and Elston (1984) presented a sequence of magnetic
reversals and a polar wandering curve from red-bed facies
in the Belt Supergroup. Although the magnetic reversals
may provide time lines for correlation within the Belt ba-
sin, the ages assigned to the time lines depend primarily
on correlation of the Pilcher Quartzite normal-polarity
pole to a statistically identical normal-polarity pole for the
Bass Limestone of the basal Grand Canyon Supergroup.
The Missoula Group has been correlated to the Pioneer
Shale (Apache Group, central Arizona) and the Sibley
Group (Lake Superior region, Ontario), based on reversed-
polarity intervals and similar pole positions (Elston, 1984).
Paleomagnetic and radiometric age determinations are in
relatively close agreement for the lower Belt, suggesting
approximate 1450 Ma ages, but results diverge widely in
the younger Missoula Group. This approach provides po-
tential for correlation in these rocks, but more complete
coverage of sequences and a better understanding of mag-
netic carriers are needed before Proterozoic paleomagnetic
correlation can be accepted as reliable.

Although stromatolites are common in many Belt units
(Rezak, 1957), the biostratigraphic resolution provided by
these organosedimentary structures for resolving the age
problems encountered in the Belt has not been attained.
Some of the apparently more useful stromatolite taxa in
Proterozoic biostratigraphic correlations, such as Cono-
phyton and Baicalia, occur in the Belt Supergroup. White
(1970) identified Baicalia from the upper part of the Lower
Belt Altyn Formation suggesting a 1350 Ma age for the
formation, although he later revised his age estimate to
1450 Ma (White, 1984). These taxa, in particular Cono-
phyton, are long ranging in the Proterozoic (Bertrand-
Sarfati and Walter, 1981). Baicalia—Conophyton cycles
are found in the Upper Helena (Siyeh) Formation (Hor-
odyski, 1976, 1983), and Serebryakov (1976) indicates that
these cycles are most typical of the Middle Riphean (1350-
1050 Ma ago). However, Horodyski (1983) feels that the
Baicalia—Conophyton cycles in the Belt should not be used
for chronostratigraphic purposes; the stromatolite mor-
phology appears to be strongly influenced by environmen-
tal factors. He refrains from using any of the Belt stro-
matolites for biostratigraphic purposes (see Horodyski,
1989b). Stromatolites do occur in the Libby Formation,
but they are flat to mound-shaped, laminated structures
with poorly preserved microstructure. Such generalized
stromatolite morphologies are not found to be very useful
or diagnostic for biostratigraphy when compared to co-
lumnar branching forms with well-preserved microstruc-
ture (e.g., Bertrand-Sarfati, 1972). Thus the Libby stro-
matolites provide no new data for a more precise age
determination for the upper Belt.

Horodyski (1989a) reviewed the microbial fossil record
in Belt carbonate (Snowslip Formation), chert (Altyn For-
mation, Helena (Siyeh) Formation), and mudstone (Ap-
pekunny Formation, Chamberlain Shale). Although Horo-

dyski (1989a) did not attempt to biostratigraphically
analyze these microfossils, he noted (Horodyski, 1980) that
the mudstone microfossils, in particular the acritarchs, are
potentially valuable for intercontinental biostratigraphic
correlations. Aside from the filaments, which have little or
no biostratigraphic value, the sphaeromorphs hold the
greatest promise. However, only Kildinosphaera cf. lo-
phostriata (Jankauskas) Vidal (1983) apparently is an Up-
per Riphean taxon (Vidal and Siedlecka, 1983); however,
kildinellid-type morphs are long-ranging, known from
Lower Riphean to Vendian strata (Hofmann, 1988). Al-
though potentially useful microfossils occur in Belt rocks,
they have not yet contributed to the chronostratigraphic
understanding of the Belt Supergroup. Possible biogenic
microstructures were reported from the Libby Formation
and other Belt units by Pflug (see Horodyski, 1989a) at
Clark Fork, but the biogenicity of these forms remains
dubious (Horodyski, 1989a).

THE LIBBY ACRITARCHS

In the Libby, acritarchs were recovered only from mem-
bers C and D in the lower Libby (Fig. 2). Member C is
characterized by dark gray argillite and greenish gray sil-
tite interbedded with stromatolitic and oolitic carbonate
beds. Member D is lithologically similar to member C,
except that it lacks carbonate, and the siltite beds are often
wavy laminated. The insoluble residue of macerated sam-
ples consists primarily of disseminated organic material
with rare microfossils. Color of both the organic matter
and most of the microfossils is predominantly very dark
brown, almost black, reflecting the thermal alteration due
to the low grade metamorphism (Staplin, 1977). In thin
section, the acritarchs and organic matter show similar
colors. Rarely were microfossils observed in maceration
that were greenish- to brownish-gray in color. The grayish
coloration might be due to the metamorphism (Konzalova,
1974, 1981). Most acritarchs found in both macerates and
thin section are solitary sphaeromorphs with rare pluri-
cellular aggregates and nonspheroidal morphs. No fila-
mentous morphs have been discovered. It is possible that
filamentous microfossils, if originally present, were more
susceptible to destruction by metamorphism.

Forty-five samples of fine-grained clastic rocks (argillite
and siltite) from Flagstaff Mountain, part of the type lo-
cality of the Libby Formation (Fig. 2), were processed for
acritarchs. This locality was selected for intensive study
because of near completeness of the section, excellent ex-
posures, relatively fresh outcrops, low-grade metamor-
phism did not appear to substantially alter the rock, and
preliminary study revealed the presence of acritarchs. The
samples were processed as follows: 1) 30-50 mg rock sam-
ples were scrubbed and soaked in a solution of potassium
dichromate and reagent grade sulfuric acid to remove or-
ganic contaminants from sample surfaces and cracks. 2)
Samples were then crushed with a mortar and pestle to
particles with maximum diameters in the granule size range
(about 4 mm). 3) Some powdered sample from the crushed
material was squirted with 10% HCI to check for a car-
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FIGURE 3—Photographs of the Libby microbiota. All photomicrographs from macerated material; bar scale = 10 um. Locations of figure
specimens are given in coordinates in millimeters from a reference “ x* scribed into the slide (‘* x "’ is to the viewer’s lower left). A. Leiosphaerid
A (slide FC110) P-1; 21.5 x 12.2); B. Leiosphaerid B (slide FC101 P-2; 12.3 x 8.7); C. Leiosphaerid C (slide FC101 P-2; 33.4 x 17.0); D.
Leiosphaerid D (slide FC101 P-2; 39.3 x 5.5); E. Non-leiosphaerid morph (slide FC16 P-3; 17.5 x 11.0); F. Torus-shaped morph (slide FC101
P-2; 29.1 x 3.1).

bonate reaction. If there was no reaction, steps 4 and 5
were skipped. 4) Carbonate-bearing samples were soaked
in 10% HCI for several days to two weeks depending on
the duration of the reaction. 5) Samples from step 4 were
rinsed by multiple centrifuge treatment. 6) Carbonate-free
samples were soaked in concentrated HF for several days.
These samples were periodically gently stirred and sup-
plied with fresh HF until most or all fragments were dis-
solved. 7) The insoluble residue from HF-treated material
was rinsed by placing samples in sealed bags constructed
of dialysis tubing and left in running de-ionized water
overnight. 8) Strew mounts of the residue were prepared
with a mixture of Kumar ® resin and xylene. This produces
semi-permanent slide preparations.

In addition to the palynological procedures employed
for the microfossil study, thick (ca. 50 um) thin sections
of the clastic rocks were made from samples cut parallel
to bedding.

Description of Acritarchs

The acritarchs thus far detected in Libby Formation
argillite are mostly thin-walled and spheroidal to irregular
in shape. No filamentous morphs have been detected. Pres-
ervation is moderate at best, and the number of micro-
fossils found in thin section was under ten per thin section
and in strew mount preparations no more than 40 per slide.
The size and morphology of acritarchs found were quite
variable. Diagenesis and low-grade metamorphism have
probably altered the original shape and features of the
microfossils such that the assignment of the Libby morphs
to previously described acritarch taxa is difficult and of
doubtful validity. No new taxa are described, no taxa are
formally identified, and only broad comparisons are made
with taxa described in the literature.

The microfossil assemblage is dominated by thin-walled,
unornamented sphaeromorphs, 7-75 um in diameter (al-
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FIGURE 4—Plot showing size distribution of microfossils grouped as
leiosphaerid A.

though a few specimens achieve sizes up to 150 um), with
moderately smooth to granular (shagrinate) surface tex-
tures. Such acritarchs can be classified as leiosphaerids
(Lindgren, 1981; Jankauskas and Mikhailova, 1986). Fu-
siform microfossils and two morphologically distinctive
morphs, one a large 54 to 150 um diameter, ovoidal, dense
microfossil and the other a torus-shaped microfossil, have
also been detected. No recognizable acritarchs smaller than
7 um have been found. Neither have any large (>150 um)
sphaeromorphs nor acritarchs with processes or other sur-
face ornamentation been found.

The Leiosphaerids

Within the Libby Formation, four morphologically dis-
tinctive leiosphaerid forms are known (Fig. 3A-D):

1) Leiosphaerid A, with diameter ranging from 8 to 32
um (X = 17.5 um; Fig. 4), is characterized by a narrow,
well-defined rim that incompletely surrounds the thin,
moderately smooth, greenish-gray to brownish-gray vesicle
with thin, wispy folds and equatorially located, slit-shaped
cracks (Fig. 3A). The origin of the rim is unclear; it usually
does not completely envelop the acritarch. In some cases
it appears to be an an artifact of viewing the microfossils
in a plane, where folding of the wall parallels the outer
boundary. The rim does not appear to be the remains of
extra-vesicle organic material. The coloration of the rim
is not significantly different from the rest of the micro-
fossil. These morphs are the most abundant category of
leiosphaerids found in the Libby (n = 26).

2) Leiosphaerid B is a round, dense, dark brown, some-
what smooth-surfaced, unfolded vesicle with a featureless
wall (Fig. 3B). Only four examples have been found, and
diameters range from 19 to 30 um. One microfossil has a
peripherally located crack that is either a “median” split
or a diagenetic feature.

3) Leiosphaerid C is represented by one brown colored
fragment (approximately one fourth of a vesicle), with a
maximum dimension of 27 um that extrapolates to a di-
ameter of approximately 108 um. Distinctive, intersecting
folds characterize this morph (Fig. 3C). Cell walls are thin
and surface texture is smooth to slightly granular.

4) Leiosphaerid D is a cluster of four cells, averaging 9
um in diameter with thin walls, granular surface textures,
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FIGURE 5—Plot of length vs. width of fusiform acritarchs in the Libby
Formation.

and each with a small, micrometer-diameter dense internal
inclusion (Fig. 3D). The inclusions might represent the
degraded remains of internal cellular material. We place
no biological or taxonomic significance on the inclusions.
This cluster is tentatively grouped with the leiosphaerids
based on considerations presented in Lindgren (1982) on
the postulated vegetative growth of leiosphaerids. The in-
dividual cells of the Libby cluster are about 9 um in di-
ameter, very near the lower size limit of all Libby leio-
sphaerids.

A number of fusiform fossils add to the assemblage. The
two best preserved fusiform morphs are dark brown, have
smooth walls, and are characterized by abundant, irreg-
ularly oriented and irregularly distributed folds crudely
sub-perpendicular to cell margins. These morphs range in
length from 22-27 um and in width from 17-19 um. Ten
additional fusiform morphs that lack surface folds display
colors of greenish-gray and light, medium, and dark brown.
Length of these forms ranges from 13-49 um, and width
ranges from 8-38 um. Length plots as a straight line against
width with a good fit (Fig. 5; R = 0.90) suggesting a taxo-
nomic relationship among all of the fusiform morphs. Due
to the difficulty in obtaining high quality photomicro-
graphs of the fusiform type, the morph is not illustrated.

Another non-leiosphaerid morph is represented by three
large (75-150 um length of long axis), ovoidal, dense, dark
brown, thick-walled, vesicles with granular surface tex-
tures. These microfossils are commonly cracked, with two
types of cracks: small (a few micrometers in length) sur-
ficial cracks, and large cracks, a few tens of micrometers
in length, that deeply incise the spheroid and occasionally
bifurcate (Fig. 3E).

Of the remaining non-leiosphaerid morphs, one, a torus-
shaped form (n = 1), is the most curious (Fig. 3F). It
consists of a larger 28 um diameter, brown, dense, thick-
walled central spheroid with two smaller 11 and 20 um
sized, thinner-walled, hemispheres attached. A possible
interpretation for this form is it is the deformed, degraded
remains of a leiosphaerid triad.
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DISCUSSION

The Libby microbiota is substantially different from the
shale and limestone microbiotas of the Chamberlain Shale
and Newland Limestone described by Horodyski (1980,
1989a). The Libby differs from the lower formations in
lacking a) filamentous morphs, b) prominently folded and
wrinkled forms assigned to Kildinosphaera cf. lophostria-
ta (Jankauskas) Vidal, and c¢) polygonally segmented or
bumpy surface sphaeromorphs referred to Satka cf. co-
lonialica Jankauskas (Horodyski, 1989a). No morphs ap-
pear to be common between the Libby and those reported
by Horodyski from older units. A general comparison of
the sphaeromorphs in the Libby Formation with those
described by Horodyski (1980) suggests that the Libby
may have a slightly more diverse assemblage than rocks
of the lower Belt Supergroup, even though the lower Belt
rocks studied by Horodyski (1980) are unmetamorphosed
(Maxwell and Hower, 1967).

The differences in composition and diversity between
these upper Belt and lower Belt microbiotas could be either
a function of depositional environment or age. With regard
to significant differences in age, this depends on the age
of the Missoula Group. As we have discussed, these age
estimates range from about 900 Ma (which would still
make the Libby microbiota 100 to 150 m.y. younger than
the Newland and Chamberlain) to >1200 Ma (which would
make the Libby somewhat younger than the lower micro-
fossiliferous formations). With regard to differences in de-
positional environment, the Newland Limestone and
Chamberlain Shale were deposited in the Helena embay-
ment, an extension of the Belt basin that may have been
a more restricted environment than the area in which the
Libby Formation was deposited (Schieber, 1986; Zieg, 1986).
The presence of filaments in the Newland and Chamber-
lain suggests a shallow, nearshore source for these presum-
ably benthic microfossils. The Libby Formation was de-
posited in the central and western Belt basin, which may
or may not have been connected with an open ocean. There
is no evidence that the stromatolites formed a barrier re-
sulting in a restricted environment like a lagoon. The lack
of filaments suggests a) no shallow, nearshore sources con-
tributed to microfossiliferous sediment, and/or b) in the
Libby, filaments were more susceptible to destruction by
metamorphism.

Although the microbiota lacks taxonomically distinc-
tive, shorter-lived, higher resolution acritarch taxa, the
biota (based primarily on the lack of diagnostic Late Pro-
terozoic taxa) does suggest a Middle Proterozoic age and
this is in agreement with all other chronostratigraphic
methods. Leiosphaerid-dominated assemblages are com-
mon in Late Proterozoic (900 to 570 Ma) clastic rocks;
however, these assemblages also contain other, distinctive
sphaeromorphic microfossils, such as Chuaria circularis
Walcott, Trachysphaeridium laminaritum (Timofeev) Vi-
dal, Tasmanites rifejicus Jankauskas (Vidal and Knoll,
1983), indicating the younger Proterozoic age. It is clear
that Late Proterozoic acritarchs in open marine settings
are quite diverse (Vidal and Knoll, 1983), but the general

diversity level of Middle Proterozoic acritarchs is poorly
known, but appears to be much lower (Jankauskas, 1982).
The diversity of the Libby spheroidal acritarchs appears
to be somewhat higher than older Belt non-filamentous
acritarch microbiotas (although direct comparison of spec-
imens is needed to verify this). However, the Libby di-
versity is low when compared to other Proterozoic micro-
biotas. This low diversity is a function of 1) age of the
Libby, 2) a restricted environment, and/or 3) preserva-
tional problems. The low diversity of the Libby microbiota
is comparable with diversity in stressed sedimentary en-
vironments in younger Proterozoic rocks (Knoll, 1984).
Paleoecological studies of Late Proterozoic acritarchs have
shown that low diversity microbiotas are common to re-
stricted sedimentary environments, whereas open marine
settings usually contain a higher diversity (Vidal and Knoll,
1983; Knoll, 1984). Paleozoic acritarch paleoecological
studies show similar patterns (Jacobson, 1979; Smith and
Saunders, 1970; Staplin, 1961). However, the low diversity
of the Libby Formation could also be a function of age if
diversity was generally low in the Middle Proterozoic. Late
Proterozoic acritarch diversity can be strongly influenced
by depositional environment. Biostratigraphic success in
the Proterozoic to date has been achieved with marine
rocks. Therefore, even if the acritarch data seemed bio-
stratigraphically more definitive, they would still be sus-
pect because of the uncertainty of the depositional envi-
ronment of the Belt Supergroup discussed earlier.

CONCLUSIONS

Although Middle Proterozoic acritarch microbiotas are
poorly known relative to those of the Late Proterozoic,
much can still be learned by the study of such microbiotas.
The specific conclusions of this study are as follows:

1. Low-grade metamorphic mudrocks can sometimes
preserve acritarchs sufficiently well for paleoenvironmen-
tal analysis and perhaps biostratigraphic correlation.

2. The Libby microbiota is a low diversity, low abun-
dance assemblage of dominantly spheroidal acritarchs.
Surface sculpture varies from psilate to slightly folded.
Acritarch diameter ranges from 7 to 150 um, with most
morphs having a diameter of 10 to 40 um.

3. These acritarchs offer no clarification of the contro-
versial age of the upper Belt Supergroup. This low diver-
sity microbial assemblage is superficially similar to other
Middle Proterozoic acritarch biotas (e.g., Jankauskas, 1979;
Chen et al., 1980) but appears to lack distinctive, taxo-
nomically identifiable morphs that might help with the
question of an older or younger Middle Proterozoic age.

4. The cause of the limited diversity in the Libby mi-
crobiota could be a result of a general low diversity in
Middle Proterozoic acritarchs, an effect of a restricted de-
positional environment that stressed the microbiota, or
selective destruction of forms resulting from the meta-
morphism. If non-filament diversity is indeed higher in
the Libby when compared to acritarchs in older, less meta-
morphosed Belt rocks, then age and/or depositional en-
vironment influenced diversity. If age (i.e., evolutionary
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diversification) is the main influence, Beltian acritarchs
diversified only minimally in the 200-500 million years
that separate the top and bottom of the supergroup.

5. Middle Proterozoic clastic rocks, both metamor-
phosed and unmetamorphosed, should be investigated more
thoroughly for acritarchs. Sediments of such age were de-
posited during a significant interval of geological time when
eukaryotes evolved and were diversifying (Vidal, 1984).
Further knowledge of the Middle Proterozoic fossil record
is critical for our understanding of pre-Phanerozoic bio-

geology.
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