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ABSTRACT

Stromatolites offer a unique window into 3.5 billion years of evolution of the microbial communities that built them

within the context of an evolving Earth. Our interest is not in the microbial life or their external matrix as

independent entities, but the appearance and evolution of complexity itself within this biogeological system. We

adopt the canonical definition of complexity as the emergence and detection of previously unseen properties

(structures, functions, information), and we propose that the defining emergent property of stromatolites apparent to

the human expert eye is the lamination.

To develop a quantitative complexity metric for stromatolites, we must ask what makes it possible for the

human brain to perceive lamination? Our visual system operates optimally as a difference machine rapidly

identifying variations in signal intensity and redundancy in neighboring regions. In stromatolites, such differences

are detected by first scanning parallel to the growth surface and then placing layers in context by scanning

orthogonal to that surface. We propose that the fundamental metric for stromatolite complexity resides in the

laminae themselves and that easily measured differences in luminance, variability, and redundancy between

alternating laminae is an emergent feature of stromatolite complexity. The metrics calculated for laminae in

photomicrographs revealed significant differences between putative biotic/abiotic laminae. The statistical indices

calculated can contribute to stromatolite recognition, description, and classification. The indices are easily calculated

in the laboratory or in the field on personal computers. We propose that such statistical information metrics be

included as a standard component in the description of extant and fossil stromatolites.
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INTRODUCTION

Stromatolites [Awramik, 1971; Walter, 1976; Riding, 1990; Riding and Awramik, 2000] are classically

viewed as laminated organo-sedimentary structures formed by microbial trapping and binding of sediment or

precipitation of dissolved minerals [Awramik et al., 1976; Burne and Moore, 1987]. However, some researchers

prefer a descriptive definition leaving biogenicity an open question [Semikhatov et al., 1979; Grotzinger and Knoll,

1999; Brasier, 2006]. The increased attention to the Archean fossil record and how it might assist in the search for

evidence of past life elsewhere in the universe have heightened concern for unambiguous signals of biological

activity [Awramik and Grey, 2005]. Stromatolites as indicators of microbial activity have fallen on hard times.

However, a persuasive case for biogenicity in some 3.45 Ga-old stromatolites can be made when multiple lines of

evidence are presented that can only be explained by one hypothesis, which invokes microbial activity [Hofmann et

al., 1999; Allwood et al., 2006]. These then would provide our most ancient record of life on Earth and rival or even

surpass the reliability of microbial fossils, which are also controversial [Brasier et al., 2002; Schopf et al., 2002;

Brasier, 2006]. Most Archean and Proterozoic stromatolites are composed of fine grained material and commonly

display sub-mm scale laminations [Walter, 1972; Grey and Corkeron, 1998]. They often lack unambiguous

microscopic evidence for microbial activity [Grotzinger and Knoll, 1999]. Some abiotic precipitates have been put

forward as similar in morphology to selected pre-Phanerozoic sromatolites and modeled using simple accretion rules

and common diffusion [Sumner and Grotzinger, 1996; 2000] equations based on the “random walk” (e.g., Brownian

motion) of particles without invoking biological processes [Grotzinger and Rothman, 1996]. However, conical

stromatolites with very steep surface angles continue to defy such modeling attempts unless high coefficients of
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friction are invoked equivalent

to those we employ to model

organic molecules [Hofmann et

al., 1999; Jogi and Runnegar,

2003]. All of these issues are

i m p o r t a n t  b o t h  t o

p a l e o b i o l o g i c a l  a n d

exobiological exploration.

Regardless of origin,

the recognition of stromatolites

is not a matter of computer

modeling, but a function of

human neurob io log ica l

discrimination of a complex

structure against a background

geological matrix. Complexity,

like beauty, resides in the eye

of the beholder. Specifically,

the recognition of complexity

in physics, chemistry, biology,

art, and music depends on the

interaction between current

perceptions and the associative

memory skills of a human

expert. The core function of theoretical and experimental science is then to identify a complexity metric capable of

measuring the characteristics of the phenomena that capture expert attention. Such a metric is of quite practical

importance. For example, remote, automated detection of differences in relative complexity would be of

considerable utility for exploratory field work in dangerous extreme environments on Earth and for robotic

exploration of Mars or the icy moons of the outer planets. The search for such complexity metrics has been the focus

of numerous investigations [Schrodinger, 1943; Chaitin, 1970; Gell-Mann, 1994; 1995]. Techniques proposed to

date include estimation of information content [Shannon, 1948; Shannon and Weaver, 1949], induction by

algorithmic probabilities [Solomonoff, 1964; 1964], algorithmic information complexity [Chaitin, 1974; Chaitin,

1987; Zurek, 1989], cellular automata [Wolfram, 1984; Mitchell et al.], Boolean concept learning [Feldman, 2001],

adaptive diversity [Huberman and Hogg, 1986], diffusion-compression [Allegrini et al., 2003], complexity evolution

[McMullin, 2000; Lenski et al., 2003], physical complexity [Adami and Cerf, 2000], neuronal stimulus encoding

[Strong et al., 1998; Krahe et al., 2002], statistical complexity [Crutchfield and Young, 1989], and effective

complexity [Gell-Mann and Lloyd, 1996]. The difficulties encountered by these efforts can be best exemplified by

considering the first and most famous attempt: Shannon information content or Shannon entropy. Shannon’s 1948

paper crystallized communication theory by defining three fundamental aspects of any communication: a

transmitter, a channel, and a receiver. To Shannon the defining feature of communication is the uncertainty a

receiver has about which message might be sent by the transmitter. That uncertainty is the information content or the

entropy of the communication. Imagine that a transmitter can only send one message. In that case, the receiver of the

message has no uncertainty about which message he can expect. In Shannon’s theory the uncertainty is zero. If the

transmitter can send either of two messages, the receiver’s uncertainty (entropy, information) is 1 in 2 or 50%; for a

transmitter equally capable of sending any one of three messages, 33%, and so on. In this system increased

complexity is associated with increasing uncertainty or the information possibilities of the transmitter.

But in such a metric there is nothing to distinguish a signal sent by a random number generator from a

maximally encoded message in which every number refers to a look-up table with pointers to a set of paragraphs,

chapters, and images sufficient to construct a highly complex nuclear power plant. The latter message is of course

possible only if the code employed by the transmitter is known to the receiver. If the code is unknown then the

phenomena will be indistinguishable from a completely random event. In science we are usually in the position of

not knowing the code. We propose that the fundamental recognition of complexity is a human neurological event, an

emergent phenomena in its own right that occurs during classification of a message. An expert observer identifies

phenomena as interesting or complex by comparing a current message to vivid memories of past events where the

Figure 1. Schematic of data flow for human expert and stochastic artificial neural network classification of

complex geobiological structures, in this case, stromatolites.
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message may be an image, a spectrum, a sound, or written language. In general, what the expert notices and

identifies as interesting, complex, emergent features are most often statistically unexpected redundancies against a

more random background matrix, or conversely, the unexpected appearance of seemingly random noise against a

less dynamic, more predictable, redundant background. In essence, human recognition of interesting, novel,

emergent phenomena depends not on the appearance of some magical complexity maximum, but on detection of co-

resident random and redundant events by an expert observer, and comparison of the immediate data to a massive

internal data set acquired across years of study. Figure 1 depicts the data flow that occurs in both a human expert

and a stochastic artificial neural network (SANNs). A series of studies into the classification of galaxies, stars,

fossils, and biotic/abiotic alteration of deep ocean basalts have demonstrated that SANNs can be trained by human

experts to reproduce their classification decisions. The interested reader is referred to the cited literature for a full

discussion of the stochastic algorithmic approach [Storrie-Lombardi et al., 1992; Storrie-Lombardi et al., 1994;

VonHippel et al., 1994; Lahav et al., 1995; Storrie-Lombardi et al., 2004; Storrie-Lombardi and Fisk, 2004; Storrie-

Lombardi and Hoover, 2004; Storrie-Lombardi and Hoover, 2005]. The critical item in all of these studies has not

been the algorithm, but the appropriate selection of measurements most likely to capture the same emergent

phenomena detected by the human expert(s).

In the present work we propose that the emergent phenomena to be measured in stromatolites are the light

and dark laminae. We also propose that the laminae characteristics most likely to capture the attention of the expert

eye are the fundamental pixel statistics accessible in a digital camera image. Mammalian neurobiology functions

optimally when asked to detect differences. From first principles defining a difference machine, we characterize a

biogeological structure as a layered phenomenon when there exists at least two lamina classes demonstrating

optically detectable statistical differences in the grain size and/or composition. We specifically focus on intra-lamina

luminance data captured parallel to the stromatolite growth surface, rather than light-dark luminance alterations in

the direction of growth such as lamina width or frequency. Although we will explore inter-laminae interactions

briefly, we suspect these changes in lamina width and character across stromatolite growth history, the focus of

much speculation over the last thirty years [Park, 1976; Andres and Reid, 2006], actual reflect a mixture of

geological, biological, ecological, and

evolutionary variables that will

remain difficult to deconvolve in the

near term. By focusing on

characterization of intra-laminal

luminal phenomena we constrict our

field of inquiry to the most

fundamental stromatolite feature -

laminae. We must stress that the

laminae optical differences noted by

human eye or recorded by a digital

camera are a function of grain shape

and size, arrangement of the grains,

and chemical composition. In this

work we do not attempt to

deconvolve chemical from structural

events. We note in passing, however,

that the data analysis strategy

employed here has been previously

used to merge structural and chemical

data sets in other fields of inquiry

including the classification of

galaxies, stars, and basalt weathering

(ibid).

The visual system has evolved to first register differences in luminance (brightness), then variance, and

finally periodic vs random fluctuation. Differences in structure and chemical composition can be captured using first

order statistics of image pixel grayscale values and relative lossless compression of matching rectangular images of

each lamina class and the intervening boundary zone. Clearly, a major variable affecting the interpretation of

detectable differences in illumination and relative compressibility indices in stromatolites is diagenesis. Untangling

Figure 2. Low resolution experiment map for Conophyton garganicum.
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complex biosignatures comprised in part of (a) chemical and structural alterations occurring during the lifetime of

the microbial community, (b) the components of the signature that are the result of changing chemical conditions

associated with degradation of the microbial mat (e.g., Decho and Kawaguchi, 2003) and (c) diagenetic alteration

will require a series of laboratory simulations describing the impact of these phenomena. In the current work we will

not attempt that task, but will focus on outlining the components of a reasonable statistical description of

stromatolite laminae using a single example, Conophyton garganicum. We describe (a) the stromatolite and (b) the

empirical complexity estimation method. We then present preliminary findings supporting the hypothesis that

stromatolite laminae characteristics, including diagenetic alteration, can be easily and reliably described using the

fundamental statistics available in a simple RGB digital image and an easily implemented compression metric. This

paper begins to explore how the methods we have developed here might potentially be employed as a biogenicity

index. Based on such observations as the Gunflint Formation’s alternating dark, microfossil-rich and light,

microfossil-poor laminae (see Awramik and Semikhatov, 1979), we have postulated that dark laminae were under

greater microbial influence than the light laminae. Laminae may represent an alternation between microbial-rich and

the biota-active accretion of sediment (dark lamina) and biotically less active, passive (possibly abiotic)

accumulation of sediment and/or precipitation of mineral matter (light lamina).

MATERIALS

To illustrate the methodology we present an analysis of silicified Conophyton garganicum Korolyuk

(emend. Komar, Raaben, and Semikhatov) from the Paleoproterozoic Amelia Dolomite collected by Preston Cloud

in 1965 in the Northern Territory (NT), Australia [Cloud and Semikhatov, 1969]. C. garganicum is a cylindrical,

columnar-layered stromatolite with conical laminae, pronounced axial zone, macrolaminae, and a striated

microstructure [Korolyuk, 1963; Komar et al., 1965]. Examples with diameter up to 1.5 meters and a synoptic relief

(height of column when forming) of up to 15 meters are known [Komar et al., 1965]. The sample chosen from the

Amelia Dolomite is columnar-layered with an axial zone, millimeter-scale dark and light macrolaminae, and

submillimeter-scale laminae within the macrolaminae (Figure 2). A wide range of diagenetic alteration is easily

identified at millimeter and sub-millimeter scales (Figure 3). The Amelia Dolomite is a stromatolite-rich unit, 150 to

180 meters thick, that crops out in the NE portion of the NT, near the Gulf of Carpenteria [Jackson et al., 1987]. The

age of the formation is ~1650 Ma [Page et al., 2000].

METHODS

Image Acquisition – Images were acquired by photographing, 600W base-illuminated 56 x 75 mm thin

sections using Nikon D70S and D200 digital SLR cameras equipped with an AF Micro Nikkor 60 mm lens. Initial

NEF images were converted to uncompressed TIF files.

Lossless Compression Estimators – The relative redundancy and randomness of an optical image can be

approximated to first order using lossless compression algorithms[Ziv and Lempel, 1977; Nelson  and Gailly 1995].

These algorithms reduce file size by identifying and re-coding redundant information. For instance, if the algorithm

detects one thousand “0” characters in an image it does what we would do – it simplifies. Instead of storing a

thousand digits, it stores the binary equivalent of “start at position x|y and insert ’0‘ x 1000.” Now it has stored a

few dozen characters instead of 1000. So, a simple complexity index would be C= compressed/raw file size. Note

that decompression of the compressed information will return the original data completely unaltered. As pointed out

above, the compressibility-incompressibility distribution and the proper way to define the interaction between those

two phenomena in a wide variety of natural systems are not yet known making the calculation of an absolute

complexity metric beyond the reach of our current science. As a pragmatic alternative, earlier work implemented a

matched-pair strategy to estimate relative compressibility by comparing an object to a surrounding environmental

matrix [Corsetti and Storrie-Lombardi, 2003; Storrie-Lombardi et al., 2003; Storrie-Lombardi and Brown, 2004;

Storrie-Lombardi et al., 2004]. In these studies the differential compressibility index, c, compared the lossless

compressibility of the image in a target area, Ct, to the compressibility of the surrounding matrix, Cm, where

c = log[1+(Ct - Cm) / (Ct + Cm)].

The absolute value of c provided the magnitude of the difference in complexity independent of whether the target

was more or less compressible than the surrounding matrix. While this is a mathematically simple and elegant
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methodology, unfortunately, ratios hide the most fundamental question about a difference between two phenomena:

is a shift due to an increase in one phenomena or a decrease in the second? In our current state of ignorance about

the proper mathematical representation of emergent phenomena, throwing any data away must count as a high-risk,

low-gain behavior. Ratios will only be of real utility when there is a much larger and more heterogeneous reference

database of well-characterized biogeological targets. After employing the lossless compression technique to estimate

redundancy in subocean basalt [Storrie-Lombardi and Fisk, 2004], meteorite [Storrie-Lombardi and Hoover, 2005],

biological [Storrie-Lombardi, 2006], and paleobiological [Storrie-Lombardi and Brown, 2004; Storrie-Lombardi et

al., 2004] targets, it now appears more intuitive and more informative to report raw compression fractions for each

target class. A high-compression index means the target is less compressible, contains less redundant or periodic

phenomena, and, hence, is less

predictable. It is extremely important to

note that both biotic and abiotic

phenomena can exhibit compressible and

incompressible features. The important

point is to detect differences

characterizing specific targets as distinct

from one another and/or distinct from a

common background. For this work we

report the simple fractional compression

index for RGB TIF files

Cx =FC/FR

where, FR is the raw file size as reported

in a standard Unix shell window (Mac Os

X 10.4) using “ls –l“ and FC is the

compressed file-size following use of the

standard Unix gzip implementation of the

Ziv-Lempel compression algorithm .

RESULTS

Low Resolution RGB Image Statistics - The defining low-magnification characteristic of the sample depicted

in Figure 2 is the appearance of the multiple dark and light macrolaminae. The macrolaminae are 1-1.5 mm thick

and are millimeters in length. These dark and light macroscopic regions are then further subdivided into finer

laminae with thickness of less than a 0.1-0.2 mm. In addition to this variability in light transmission at the

macroscopic level, there is also a wide range in preservation of the fine laminae. Visual examination of low and

medium resolution images of Conophyton garganicum (Figures 2 and 3) reveals several areas of relatively unaltered

dark and light macrolaminae but wide variation in average light transmission for both dark and light laminae. Since

the impact of the regional variation in transmission was unknown, 64x64 pixel image samples (approximately 0.5 x

0.5 mm) were acquired from the dark (D), boundary (B), and light (L) regions at each of four distinct sites (regions

1-4 in Figures 2 and 3). We calculated image statistics including mean, minimum, maximum, variance, mode, modal

number (N) and determined lossless compressibility indices for a total of 60 images to characterize photon

transmission characteristics at 8 µm/pixel resolution.

Results are described for each of two macroscopic lamina classes identified as “Dark” (D) and “Light” (L) as

well as for the “boundary” images (B). Boundaries (edges) are of particular interest because of the prominent role

they play in human neural pattern recognition and because they often are characterized by non-linear shifts in

redundancy easily detected by lossless compression algorithms as a region of high complexity.

In the first region 15 image samples were acquired from an area exhibiting relatively well-preserved dark and

light regions and a sharp boundary region. D, B, and L image samples were acquired from left to right in matched

triads along the D|L boundary. Region 2 is an example of severe diagenetic change in a light macroscopic lamina. D,

B, and L image triads were obtained from 10 sequential sites starting at the left edge of Region 2. The first 4 sites,

L1-L4, exhibit marked loss of matrix secondary to diagenetic change resulting in what appear to be lacunae with

thin but prominent boundaries. The last 6 images sampled sites appearing fairly well preserved to the eye. Region 3

Figure 3. Experiment map of Conophyton garganicum at 8mm/pixel

spatial resolution. Photograph taken with horizontal lamina

orientation. Direction of growth is from bottom to top of image.
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contains two neighboring dark and light areas that seem to the eye to blend smoothly into one another without a

clear, well-defined boundary. Region 4 contains two areas exhibiting fine, well-defined laminae, but one area is

dominated by dark and one by light laminae. The boundary region is a wide discontinuity filled with an almost

opaque material. To the eye the region of dark banding exhibits much more well-defined boundaries between the

sub-millimeter laminae. Figure 4 is a higher resolution photomicrograph of region 5 (Fig. 2 and 3) to explore

individual laminae at a spatial resolution of 2.6 µm/pixel. This region has been morphologically well-preserved by

transformation of carbonate to chert early in the diagenetic process.

Image statistics for the 64x64 pixel (8 µm/pixel) samples (N=60) are reported by region in Table 1. Mean,

minimum, maximum, and modal variables differ significantly for dark and light macrolaminae. Table 2 lists the

compression indices statistics for all four regions. As expected, images containing the boundary between the two

types of macrolaminae are less compressible than images of either dark or light macrolaminae alone. In Region 1,

light macro-laminae appear less compressible than dark in four of the five samples. The one triad with similar

compression indices for dark and light laminae sampled may have been compromised by submillimeter diagenetic

alteration not apparent to the eye at this magnification.

Table 1. Image (64x64 pixel) statistics (8 µm/pixel)

Exp D|L N Mean Min Max Mode Mode N Variance

1 D 5 67.6±3.8 39.0±1.6 102.0±6.6 60.4±8.4 193.02±6.2 120.4±46.7

L 5 108.6±3.2 62.8±14.5 142.6±8.2 111.4±2.4 187.8±39.2 109.6±27.7

2 D 10 78.1±3,1 42.7±9.1 115.3±12.6 78.0±3.4 222.6±25.1 97.7±43.0

L 10 135.2±9.5 13.0±20.8 78.0±9.3 170.2±12.8 135.0±39.1 156.1±89.1

3 D 10 61.5±5.3 34.4±6.6 96.1±6.1 61.6±7.8 188.2±24.1 107.9±30.5

L 10 105.6±3.0 56.9±23.2 145.5±8.2 104.1±3.0 200.8±25.4 97.8±26.8

4 D>L 5 70.6±1.5 37.0±4.5 101.2±6.8 70.8±2.9 225.4±48.4 89.4±21.8

L>D 5 85.0±2.7 51.4±5.8 117.2±11.9 83.8±6.5 226.0±55.3 93.4±50.4

Region 2 shows a gradual increase in laminae damage as we scan from the left to the right. Starting in the left

portion of the region, sites 1-5 exhibit marked loss of laminae detail due to diagenetic alteration. Sample sites 6-10

appear fairly well preserved to the eye. Light and dark compression indices are clearly distinguishable from each

other and from the transition area in the left of Region 2. The most dramatically altered sample sites to the right of

the region exhibit complexity levels similar to boundary area condition. This is not unexpected, since the eye

identifies the regions as highly altered by detecting the lacunae boundaries. These boundaries differ significantly

from laminar boundaries with the latter being quite linear and continuous as opposed to the curvilinear, swirling, and

broken boundaries separating the altered lacunae. However, boundary conditions appear more complex to both the

eye and the lossless compression algorithm than either the dark or light unaltered matrix.

Region 3 contains two neighboring sets of dark and light macrolaminae appearing to differ only in relative

opacity to the eye. In both regions laminae appear fairly well-preserved and show no evidence of the smoothing and

lacunae characterizing the more highly altered area in other regions. The boundary between dark and light appears

somewhat blurred to the eye. In spite of this relatively smooth blending the compression algorithm detects a

significant difference between the boundary and lighter and darker zones in 8 of 10 samples. The algorithm agrees

with the human observation that the dark and light zones are otherwise quite similar and detects no significant

difference in complexity indices. Region 4 compares two neighboring zones with fine laminae, one dominated by

dark and one by light material. The boundary is a pronounced discontinuity filled with an almost opaque material.

Again the images including the boundary are the least compressible, but now there is a reversal in compressibility

for light and dark macro-laminae.

Global statistics for 64x64 pixel 8µm low resolution images – Examination of the correlation and covariance (not

shown) matrices for pixel and compression variables reveals strong correlations between mean, minimum,

maximum, and mode variables, and between modal N and pixel variance. Principal component analysis extracts

three factors accounting for > 90% of the information in the data. Factor 1 is comprised predominantly of the

covariant mean, minimum, maximum, and mode variables. Factor 2 is strongly correlated with modal N and shows

strong negative correlation with pixel luminance variance. Compression index (Cx) is the primary component of
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Factor 3 with minimal contribution from other variables. It is important to note that the information provided by the

pixel variance metric is orthogonal to that provided by the compression index. While dark and light laminae clearly

differ from one another on the basis of mean photon transmission and in many cases may exhibit differences in

variance and other distribution parameters, the compression index provides information not contained in or

constrained by these factors. These comments focus on mesoscopic observations and experiments that would be

accessible to the low magnification cameras commonly included in rover work on Mars or in field kits for extreme

environment field work on Earth. However, the marked variability in compression across the four sampling sites

emphasizes the necessity of focusing on matched laminae if we wish to control for diagenetic alteration. We next

present luminance, variability, and compressibility data characterizing sub-millimeter dark and light laminae.

Table 2: Compression (Cx) statistics for Dark (D), Light (L), and Boundary (B) images (8 µm/pixel)

Ex

p

D B L [D-B] [L-B] [D-L]

# ( Compression mean±1 ) (Paired t-test mean difference, 2-tail significance)

1 0.601±0.011 0.652±0.018 0.619±0.015 -0.050, p<0.0002 -0.033, p<0.001 -0.017,

p<0.017

2 0.625±0.019 0.690±0.019 0.649±0.019 -0.065, p<0.0001 -0.040, p<0.0025 -0.024,

p<0.013

3 0.613±0.017 0.672±0.021 0.619±0.020 -0.059, p<0.0001 -0.053, p<0.0002 -0.006,

p<0.493

4 0.618±0.009 0.679±0.017 0.591±0.026 -0.060, p<0.0008 -0.088, p<0.0001 0.028, p<0.065

Submil l imeter  luminance,

variability, and compressibility –

Conophyton in the Amelia Dolomite is

silicified. [Jackson et al., 1987] The chert

has preserved fine details of the

lamination (Figure 4), which make our

study possible. The area to the right of A

clearly shows that chert replaced

laminated carbonate relatively early

during diagenesis. Laminae in carbonate

can be traced into the chert (arrow).

Subsequent to chert replacement, the

c a r b o n a t e  u n d e r w e n t  f u r t h e r

crystallization obscuring much of the fine

details of the lamination. The chert now

preserves laminae more faithfully than the

adjacent carbonate, which is coarser

grained than the chert. The area to the

right of B shows good preservation of

lamina in chert with the post-chert

recrystallization of remaining carbonate

obscuring original lamination. The

carbonate to the right of C has undergone

even more diagenesis with neomorphism

forming larger crystals of carbonate

(arrow). The area to the right of D shows a portion that is primarily carbonate that preserved some of the original

lamination. However, neomorphism has also produced some areas of larger carbonate crystals (arrows). Note the

transition of the carbonate-dominated lower portion to the right of D to chert that has replaced the carbonate earlier

in diagenesis, preserving some of the finer details of lamination that were lost during post-chert diagenesis of the

carbonate near the top of this carbonate layer. 190 x 4 pixel (0.5 x 0.01 µm) images were obtained at 2.6 mm/pixel

spatial resolution from dark and light laminae as matched pairs (Ndark = 23, Nlight = 23) from well-preserved, chert-

Figure 4. Photomicrograph of lamination in Conophyton

garganium showing the good preservation of laminae in the chert,

relationships between chert and carbonate, and the complexity of

the replacement and diagenesis.

100µm
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rich sites B and B’ (Figure 4). The image luminance and compression statistics appear in Table 3. Dark and light

laminae were easily distinguished at 23 of 23 sites by both compression and luminance statistics.

Table 3. Image (190x4 pixels) statistics for dark and light laminae.

Cx L[mean] L[min] L[max] L[mode] [modeN] L[var] FK
1

P>K
2

BKS
3

Dark 0.63±0.04 45.7±6.6 29±5 81±19 42±6.6 55±20 102±67 35±12 2.3±9.8E-09 0.82±0.04

Light 0.76±0.02 90.9±15.0 50±11 156±20 79±19 24±5 546±237 34±13 4.3±18.0E-08 0.81±0.04

t-test 4.73E-13 5.09E-13 3.26E-8 1.29E-9 5.20E-9 1.05E-7 1.78E-8 0.726 0.291 0.172

White Noise Periodicity Statistics: [1] Fisher’s Kappa; [2] Probability>Kappa; [3] Bartlett’s Kolmogorov-Smirnov

The dark-light laminae distinction is accomplished in 23 of 23 pairs by either Cx or mean luminance and

luminance variance correctly identifies light and dark lamina in 22 of 23 pairs. Periodicity estimates including the

Fisher’s Kappa, Probability>Kappa, and Bartlett’s Kolmogorov-Smirnov statistics detect wide variability in

periodicity for both light and dark laminae at 2.6 µm/pixel resolution. Figure 5 depicts the results of first producing

an unsupervised, autonomous classification of the 23 pairs of laminae using hierarchical cluster analysis (HCA).

Artificial neural network (ANN) prediction of the correctness of the HCA classification using four variables

[lossless compression (Cx), mean luminance (Lmean), luminance variance (Lvar), and Bartlett’s Kolmogorov-

Smirnov estimate of periodicity (BKS). PCA detects strong correlation between 3 of the variables (Cx, Lmean,

Lvar) and collapses them into first principal component accounting for 67% of the information in the data set. PCA

factor 2 comprised predominantly of the BKS periodicity estimate contributes 26% of the data set information.

Periodicity does not distinguish between light and dark lamina due to the extreme variance depicted by the 1  error

bars in spectral density plot. Examination of photomicrograph reveals marked intrusion of dark lamina into all light

lamina. Multiple dark-light edge transitions accompanying these intrusions produces the low compressibility index

(Cx).

DISCUSSION

The metrics we have presented here for macroscopic and microscopic laminar phenomena apparent in

stromatolite photomicrographs are easily generated using readily available digital camera and laptop computer

technology. The metrics quantify redundant and random phenomena in a complex biogeological matrix. We propose

that the data critical for quantifying human expert identification of stromatolite complexity can be found in the intra-

lamina aperiodic and periodic alterations in luminance in the dark and light laminae and that the easily measured

variations between alternating laminae is an emergent feature of stromatolite complexity. The luminance and

compression metrics calculated for laminae in photomicrographs revealed significant differences between dark and

light laminae and can serve as an automated edge-detection methodology. We postulate that the initial passive,

abiotic sedimentation in the absence of biotic alteration would have left a geological matrix characterized by

relatively random distributions of particle sizes and shapes. Photomicrographs at a scale capable of resolving those

particles would exhibit minimal redundancy and be relatively incompressible. The relatively smooth textures in the

dark laminae in Conophyton exhibit significant redundancy and are more easily compressed. We speculate that the

diminished redundancy is the result of microbial alteration, with the laminae representing a temporal alternation

between biota-active accretion of sediment (dark) and abiotic passive accumulation of sediment (light). However,

testing the validity of that hypothesis is beyond the constraints of the current study. The light laminae in this sample

appear to be a mixture of light material with irregular incursions of dark. Such a dynamic system produces a high

degree of uncertainty or randomness into the photomicrograph pixel statistics. The algorithms employed here

efficiently detect the differences capturing the interaction as high variance and low compressibility.

It appears the indices calculated can contribute to quantification and automation of stromatolite recognition,

description, and classification. Boundaries are easily distinguished greatly simplifying the pattern recognition task

for robotic devices. The metrics proposed also facilitate detection and analysis (or avoidance) of regions exhibiting

diagenetic alteration. In particular we point out that it is important to distinguish compression differences arising

from differences in light transmission homogeneity in laminae versus higher order phenomena such as periodic

alterations in accretion or subsequent diagenesis. We suspect the detection of true periodic events may evolve into

an excellent probe for tracking temporal variations in initial formation and subsequent diagenesis.
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Figure 5. Neural network (ANN) prediction of HCA classification using four variables: lossless compression

(Cx), mean luminance (Lmean), luminance variance (Lvar), and Bartlett’s Kolmogorov-Smirnov estimate of

periodicity (BKS). PCA detects strong correlation between 3 of the variables (Cx, Lmean, Lvar) and collapses

them into first principal component. Periodicity does not distinguish between light and dark lamina due to

extreme variance depicted by the 1  error bars in spectral density plot. Examination of photomicrograph reveals

marked intrusion of dark lamina material into each light lamina. Multiple dark-light edge transitions produce low

compressibility index (Cx).
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Even though the global statistics for systematic appearance of periodic phenomena (Table 3) show

insignificant differences between dark and light laminae, individual analysis of spectral densities for each pair

reveals that while some laminae exhibit patterns indistinguishable from white noise, others contain strong periodic

signals repeating approximately every 10-30 µm. Figure 6 depicts the mean spectral density for the 23 pairs of light

and dark laminae. The periodic signal is strong enough to make an appearance in the mean density plot for light

laminae, but remains buried in the sample variance (error bars are one sigma).

We propose that the human expert identifies significant complexity in an outcrop or an image of a fossil

stromatolite by comparing fundamental luminance difference in a specific sample with a large set of images filed in

visual memory centers over decades of field and laboratory observations. Estimation by the human expert of the true

complexity apparent in a specific stromatolite sample can only be accomplished by placing the observed object in a

broader context. If we are to look forward to a time when the subjective evaluations of individual human experts can

be codified into algorithms and instrumentation for remote exploration of other terrestrial bodies, we need to start

the process of building an easily accessed database containing the same morphological and chemical information

employed by the human observer. We recommend that information metrics such as the fundamental image

luminance statistics and Ziv-Lempel lossless compression estimates presented here be included as a standard

component in the published descriptions of stromatolites. Future work in our laboratories will focus on delineating

the statistics characterizing self-organizing, sub-millimeter-scale laminae and training stochastic probabilistic neural

networks to mimic the classification decisions of a human expert.
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